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Abstract. A chaotic motion of gyrostats in resistant environment is considered with the help of well 
known dynamical systems with strange attractors: Lorenz, Rössler, Newton-Leipnik and Sprott 
systems. Links between mathematical models of gyrostats and dynamical systems with strange 
attractors are established. Power spectrum of fast Fourier transformation, gyrostat longitudinal axis 
vector hodograph and Lyapunov exponents are find. These numerical techniques show chaotic 
behavior of motion corresponding to strange attractor in angular velocities phase space. Cases for 
perturbed gyrostat motion with variable periodical inertia moments and with periodical internal rotor 
relative angular moment are considered; for some cases Poincaré sections are obtained.  
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1  Introduction 

Problem of rigid bodies motion and its practical engineering applications such as 

gyroscopes, gyrostats and dual-spin-spacecraft are very important for modern science. Despite 

classical analytical research results and exact solutions this problem is still far from complete 

due to the existence of chaos phenomena [1-13]. Among the basic directions of modern research 

within the framework of the indicated problem it is possible to highlight the following points: 

deriving exact and approximated analytical and asymptotic solutions, investigation into stability 

of motion, the analysis of motion under an influence of external regular and stochastic 

disturbance, research into dynamic chaos and study of non-autonomous systems with variable 

parameters.  

Recently, chaotic dynamic has becomes one of the major part of nonlinear science. 

Applications of dynamical systems with chaotic behavior and strange attractors are seen in many 

areas of science, including space-rocket systems [7-12]. E. N. Lorenz and O. E. Rössler systems 

[1, 2] represent classical dynamical systems with strange attractors. R. B. Leipnik and 

T. A. Newton [3] found two strange attractors in rigid body motion. Since Leipnik and Newton's 

work, the chaotic dynamics of rigid body motion investigates in many works. J. C. Sprott [4, 5] 

examined 19 systems of three-dimensional autonomous ordinary differential equations with 

strange attractors; also critical points, Lyapunov exponents and fractional dimensions of systems 

were found. 

Work [7] contains the analysis of chaotic behavior of a spacecraft with periodic time-

dependent moments of inertia during its free motion. The equations of variable mass coaxial 

bodies system were developed in papers [10] where also the attitude motion of coaxial bodies 

system and double rotation spacecraft with time-dependent moments of inertia were analyzed on 
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the base of special method of phase trajectory curvature analysis. The results [7-12] can be used 

for the analysis of attitude motion of a gyrostat-satellites and dual-spin spacecraft including 

motion with an active solid-propellant rocket engine. 

In this paper more attention is focused on chaotic attractors in phase space of angular 

velocity of gyrostat and on perturbed gyrostat motion in resistant environment with energy 

dissipation/excitation. 

Conditions of correspondence of mathematical models of gyrostats in resistant 

environment and dynamical systems with strange attractors (Lorenz, Rössler, Newton-Leipnik 

and Sprott) are defined. To confirm the system chaotic behavior numerical computer simulations 

are used. These simulations are performed by means of numerical integration of the equations of 

motion with the help of several numerical tools: time history of phase coordinates, gyrostat 

longitudinal axis vector hodograph, Poincaré map, fast Fourier transform power spectrum. This 

characterizes the dynamical behavior of the gyrostat in resistant environment as regular or 

chaotic.  

2 Mathematical model 

 Let us consider a gyrostat attitude motion about fixed point in resistant environment with 
energy dissipation/excitation (fig.1). Assume resistant environment effect corresponding to 

action of external forces moments that are constant  e
constM , linear  e

linM  and nonlinear 

 e
quadM  in main body angular velocity projections onto body frame axes x1x2x3   , ,

T
p q rω . 

 

Fig.1 – Inertial    and gyrostat main body  1 2 2x x x  frames 

 The motion equations follow from angular moment’s law: 

  e e e
const lin quad+ × + = + +K ω K R M M M      (1) 

where 

   1 2 3 1 2 3

2 2 2

; , , ; , , ; ;

, , ; ; ;

; ; ; ; , 1..3

T Te e
const lin

Te
quad ij ij

ij ij i i

= = R R R = d d d =

= p q r = a b

a const b const R const d const i j

 

          

    

K I ω R M M A ω

M B A B   (2) 

K – angular moment of gyrostat main body with “frozen” internal rotor; I – inertia tensor of 

main body with “frozen” internal rotor; R – constant angular moment of relative rotor motion (in 
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body frame); A, B – constant matrixes. 

 Matrix structure of external forces moments (2) can describe an action of viscous drag, 

hydro(aero)dynamic lift, nonuniform lift and friction in fluid flow  0V  of main body with 

roughened surface and propeller elements.  
Assume coincidence of gyrostat center of mass, rotor center of mass and fixed point. Also 

let us consider case of spherical inertia tensor of rotor and gyrostat general inertia tensor 

 diag , ,A B CI . In this case scalar form of eq. (1) can be write as follows 

2 2 2
11 12 3 13 2 11 12 13 1

2 2 2
22 23 1 21 3 21 22 23 2

2 2 2
33 31 2 32 1 31 32 33 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ap B C rq a p a R q a R r b p b q b r d

Bq C A pr a q a R r a R p b p b q b r d

Cr A B qp a r a R p a R q b p b q b r d

          


          
           







  (3) 

Dynamical system (3) is supplemented with kinematical system for Euler type angles 

      1 2 3about about aboutx x x    : 

 

 

1
sin cos ; cos sin ;

cos

sin
cos sin .

cos

p q p q

r p q

     



  



   

  

 



   (4) 

In considered case gyrostat kinetic energy takes on form: 

     2 2 2 2 2 2
1 2 3 1 2 3

1 1

2 2
T Ap Bq Cr pR qR rR R R R            (5) 

3 Links between gyrostat chaotic motion and strange attractors 

It is well known fact that unpredictable chaotic long-term solutions can exist for simple 

nonlinear deterministic systems. The study of nonlinear dynamics has brought new excitement to 

one of the oldest fields of science and, certainly, mechanics. So, many papers and, for example, 

works [3, 11, 12] describe chaotic motion of rigid body and gyrostats as modes corresponded to 

strange attractors in phase space. The paper [4] also contains several interesting and important 

chaotic dynamical systems with strange attractors. 

 In this paper we will find conditions of reduction of gyrostats motion equations (3) to 

Lorenz, Rössler, Newton-Leipnik and Sprott dynamical systems. General form of indicated 

dynamical systems of three autonomous first-order ordinary differential equations (ODE) can be 

write as: 

     , , ; , , ; , ,x y zx f x y z y f x y z z f x y z         (6) 

The system (6) has strange attractors in many cases including classical dynamical systems, 

which presented in table 1 [4]. Cases A-S correspond to Sprott systems [4, 5], and LOR, ROS, 

NL – to Lorenz, Rössler, Newton-Leipnik systems. 

 It is possible to write condition of equivalence of dynamical systems (3) and A-NL 

(tabl.1), where variables change take place  , ,p x q y r z   . 

First of all we take notice about signature (+/-) in table 1. Signature "+" means possibility 

of reduction of systems A-NL immediately to system (3): it implies definition of corresponded 

components values of vectors  e
constMR,  and matrix  IBA ,, . Signature "-" means 
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unrealizability of this reduction without presence of additional special control torque of 

gyroscopic type in right parts of systems (1) and (3): 

 , , ; ; , 1..3
Tgyro

control ijqr pr pq g i j     M G G     (7) 

This artificial forces moment (7) can be formed with the help of special technical actuators and 

thrusters. 

 

           Table 1 
Case fx fy fz Signature 

A y -x+yz 1-y2 - 
B yz x-y 1-xy + 
C yz x-y 1-x2 - 
D -y x+z xz+3y2 - 
E yz x2-y 1-4x - 
F y+z -x+y/2 x2-z + 
G 2x/5+z xz-y -x+y - 
H -y+z2 x+y/2 x-z + 
I -y/5 x+z x+y2-z + 
J 2z -2y+z -x+y+y2 + 
K xy-z x-y x+0.3z - 
L y+3.9z 0.9x2-y 1-x + 
M -z -x2-y 1.7(1+x)+y2 + 
N -2y x+z2 1+y-2x + 
O y x-z x+xz+2.7y - 
P 2.7y+z -x+y2 x+y + 
Q -z x-y 3.1+y2+0.5z + 
R 0.9-y 0.4+z xy-z - 
S -x-4y x+z2 1+x + 

LOR -s(x-y) 
s=10 

-y+wx-xz 
w=28 

-vz+xy 
v=8/3 

+ 

ROS -y-z x+ky 
k=0.2 

v+(x-w)z 
v=0.2, w=5.7 

- 

NL -kx+y+wyz 
k=0.4, w=10 

-x-my+5xz 
m=0.4 

vz-5xy 
v=0.175 

- 

 
Now we can present following conditions of reductions of A-NL systems to system (3), 

and vice versa. These conditions establish connections between external and internal parameters 

(mass-inertia, gyrostat rotor angular moment, roughened surface and propeller elements 

properties, friction in fluid flow etc.). 

LOR-case conditions: 

0

11 0 12 0 3 13 2

21 0 3 22 0 23 1

31 2 32 1 33

2 ; 0

2 ; 2 ;

; ;

; ;

ij i ijA C B B b d g

a B s a B s R a R

a B w R a B a R

a R a R a vC

     


     


    
     

    (8.LOR) 

If we use substitution of coefficient (8.LOR) into system (3), then we obtain classical 

Lorenz equations.  

It is need to note that for LOR-gyrostat ((3) with (8.LOR)) main body is dynamically 

symmetric (B=C) and third inertia moment is twice as large (A=2B).  
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ROS-case conditions: 

32 1,2 33, 2

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; ; 0; 0;

0; ;

; ;

; ;

ij iji j
A B C g C g b d d vC

a a A R a A R

a B R a kB a R

a R a R a wC

 
       

       


   


    

  (8.ROS) 

For ROS-gyrostat spherical inertia-mass symmetry takes place (A=B=C). 

NL-case conditions: 

11 22 33

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

: , , ; 0;

; 5 ; 5

; ;

; ;

; ;

ij iA B C b d diag

g wA B C g B A C g C B A

a kA a A R a R

a B R a mB a R

a R a R a vC

   


         


     
      

    

G

  (8.NL) 

For NL-gyrostat general case of inertia-mass takes place (ABC). 

A-case conditions: 

0 21 0 32 0 3 0

11 12 0 3 13 2

21 3 22 23 1

31 2 32 1 33

; ; ;

0; ;

; 0;

; ; 0

B C A A g A b A d A

a a A R a R

a B R a a R

a R a R a

      
     


    
    

     (8.A) 

where other components of , , , e
constA B G Μ  equal to zero. 

B-case conditions: 

3

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; 2 ; 0; 0;

0; ;

; ;

; ; 0

ij ijA C B C g b d C

a a R a R

a B R a B a R

a R a R a

    


   


    
    

      (8.B) 

F-case conditions: 

31

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; 0; 1; 0

0; ;

; / 2;

; ;

ij iA B C g b d

a a A R a A R

a B R a B a R

a R a R a C

    


    


    
     

       (8.F) 

Other cases conditions can be write by analogy (by the way of equalization of 

corresponding coefficients of sys. (3) and A-NL). So we can conclude that dynamical systems 

with strange attractors A-NL correspond to gyrostats equation ((3) with conditions (8.A), (8.B), 

(8.NL)…), which allow chaotic modes of motion.  

4 Perturbed motion examination 

4.1 Inertia moments perturbation  

 Haw we saw in previous paragraph dynamical system with strange attractors can 

correspond to system equations of gyrostat motion. Considered gyrostats possessed constant 
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parameters (moments of inertia, relative rotor angular moment component, resistant environment 

and gyrostat outer surface properties, etc.). Now let us examine perturbed gyrostat motion with a 

time–dependent moments of inertia, motion of this gyrostat and influence of parameters 

variability on strange attractor change. It is need to note, that the inertia moment variability can 

describe small elastic vibrations in gyrostat construction [7].  

 LOR-gyrostat. 

 Assume following time-dependencies of inertia moments in the case of LOR-gyrostat: 

   0 0( ) ( ) 1 sin ; ( ) 2 1 sinB t C t B t A t B t           (9) 

where  is small nondimensional parameter  10   ; other parameters in (8.LOR) are constant. 

Take into account conditions (8.LOR) and dependencies (9) we can write motion equations: 

 

  

  

1 sin

1
1 3 sin

1 sin

1
1 3 sin

1 sin

s x y
x

t

y wx y t xz
t

z t xy vz
t









  


 


    
 


     







    (10) 

In order to examine of perturbed motion several numerical techniques are used. They are 

based on the numerical integration of the equations of motion (10) by means of a Runge–Kutta 

algorithm. So, we present perturbed strange attractor (fig.2-a) in phase space {x, y, z}, x(t) time-

history (fig.2-b), power spectrum of x(t) fast Fourier transformation (fig.2-c), kinetic energy (5) 

time-history (fig.2-d), asymptotics of Lyapunov exponents (fig.2-e) and longitudinal axis vector 

hodograph (fig.2-f). Fig.2 was obtained at  = 0.1 and =100 (1/s). 

Longitudinal axis vector hodograph  te  was plotted with the help of numerical 

integration of equations (3), (4) and matrix transformation of components of a unit vector of 

longitudinal z-axis of main body  Txxx 1,0,0
321
e  into initial frame  : 

     
321

111

xxxee


       (11) 
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All signs of chaotic motion are shown (fig.2): complexity and irregularity of phase 

coordinate, broadly distributed power spectrum, positive Lyapunov exponents.  

Lyapunov exponents for perturbed motion LOR-gyrostat was calculated on the base of 

Benettin algorithm [14] (with Gram–Schmidt process of orthogonalizaiton) and have following 

values (with accuracy 10-2):  

  1 2 30 : 0.89; 0; 14.56        ; 

  1 2 30.1: 0.87; 0; 14.61        ; 

  1 2 30.5 : 1.04; 0; 16.73        ; 

  1 2 30.75 : 1.47; 0.14; 16.71         ; 

  1 2 30.90 : 3.66; 1.57; 13.51         . 
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(a) (b) 
 

      
   (c)       (d) 
 

          
   (e)       (f) 

Fig.2 – Numerical research results for LOR-gyrostat with inertia moment variability ( = 0.1) 
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The Kaplane-Yorke dimension of perturbed strange attractor increase as compared with 

classical Lorenz attractor: 

1 11

0 0.5 0.75 0.900.1

1
; sup : 0;

2.06; 2.08; 2.15.

D i

KY j j
j jD

KY KY KY KY KY

D D D i

D D D D D
   

 
  

   

   

    

 
 (12) 

 Calculation of divergence of perturbed system (10) phase flow  Tzyx fff ,,F  

  












 t

vs

sv
vs sin

1

1
11div F     (13) 

show that the perturbed system is dissipative  0div F  if 

   1 1v s v s            (14) 

In the classical case of Lorenz  28;3/8;10  wvs  from condition (14) follow limitation 

16.21941  , which guarantee the system dissipativity at 1 . Consequently, every finite 

(small) the system phase-space volume will reduce to zero value and every phase trajectory will 
attract to strange attractor. 

Comment about application of LOR-case. The Lorenz system, first of all, describes the 
convective motion of fluid [1]. This system also can be applied to the analysis of dynamos and 
lasers. In addition it is need to note that LOR-case can, for example, simulate attitude motion of 

the gyrostat   1,0,0
T

RR  with inertia-mass parameters corresponded to a thin disk-shaped 

body (like a coin: A=mR2/2, B=C=mR2/4) at presence of propeller blades  0ija   and 

roughness of the body surface  0iia  . This makes it possible to apply the LOR-case 

investigation results to examination of vehicles special motion modes in resistant environments. 
Also these results can be used for the description of gyrostat-spacecraft perturbed attitude motion 

with feedback control (interpreting the torques e
linM  as feedback control). 

 
 A-gyrostat. 

 Assume following time-dependencies of inertia moments in the case of A-gyrostat: 

         tAtCtAtBtA  sin1;sin1 00     (15) 

Other parameters in (8.A) are constant. For numerical evaluation we take =100 (1/s).  

 Take into account conditions (8.A) and dependencies (15) perturbed motion equations for 

A-gyrostat can be write as follows: 

 

 .1
sin1

1

;
sin1
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;
sin1sin1

sin2

2y
t

z

xyz
t

xz
t

t
y

t

y
yz

t

t
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    (16) 

Lyapunov exponents for perturbed motion of A-gyrostat (with accuracy 10-2):  

   1 2 30 : 0.01; 0; 0.01        ; 

    1 2 30.3 : 0.03; 0; 0.03          

The Kaplane-Yorke dimension in this case always equals to 3; the system is conservative and 

phase space volume conservation takes place
3

1

0i
i




 
 

 
 . 
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   (a)       (b) 

      
   (c)       (d) 

       
   (e)       (f) 

Fig.3 – Numerical research results for A-gyrostat with inertia moment variability ( = 0.3) 
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 Integer (not fractional) dimension and presence of positive Lyapunov index means that 

this system has not strange attractor (like geometry objects with fractional dimension), but 

gyrostat motion is chaotic (positive -exponent mixes of phase trajectories).  

 Numerical modeling results are presented at figures (fig.3 – fig.6). Fig.4-5 contain 

Poincaré sections (z=0) of the system phase space for unperturbed [4] (fig.4) and perturbed 

(fig.5, 6) cases. It is needed to note, that phase trajectory intersect the plane (z=0) in different 

region depending on direction of phase point motion along phase trajectory (fig.4-b):  

1). Region    , 1 1,y     corresponds to intersection with direction 0, :z z     

2). Region  1,1y   corresponds to intersection with direction 0, :z z    

 
 

       
   (a)       (b) 

     
    (c)       (d) 

Fig.4 – Poincaré sections (z=0) in unperturbed A-gyrostat case ( = 0) [4]: 
a – general Poincaré section; b – with intersection direction control :z    ; c, d - zoom 
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   (a)       (b) 

                
   (a)       (b) 

Fig.5 – Poincaré sections (z=0) in perturbed A-gyrostat ( = 0.3): 
a – general Poincaré section; b – with initial condition from depicted rectangle; c, d - zoom 

 

How can we see, perturbation generate heteroclinic loops and corresponding meander tori 

at the Poincaré sections (fig. 5). This circumstance even more complicates the system motion 

dynamics. 

Also it is need to note, that time history of kinetic energy T(t) show, on the one hand, 

gyrostat chaotic motion features and, on the other hand, nonregular characteristics of external 

environment and internal forces action. Kinetic energy change law imply  

  ( ) conste iT dW dW W t     

where W(t) is total work of all external (“e”) and internal (“i”) forces. It corroborates the 

statement that deterministic chaos in dynamical system (and strange attractor like its geometrical 

image) can be explained on the base of mechanical description: presence of nonregular influence 

result in nonregular system behavior. Thus, we shall conclude that kinetic energy T(t) time 

history is also one of the primary technique for examine of chaotic motion. 
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   (a)       (b) 

Fig.6 – Poincaré sections (z=0) in perturbed A-gyrostat ( = 0.5): 
 a – general Poincaré section; b – zoom 

 

Comment about application of A-gyrostat Sprott case. The Sprott system for A-gyrostat 

can be applied, for example, to the analysis of attitude motion of the gyrostat   30,0,
T

RR  

with inertia-mass parameters of a spherical body (A=B=C), xy-propeller blades 

 12 21 3a a A R    , smooth body surface  0iia   at presence of constant z-spin-up torque 

(d3=A) and special feedback control (g21=-b32=A). This makes it possible to apply the A-case 
investigation results to examination of gyrostat-vehicles special motion modes in resistant 
environments with feedback control. 

 

4.2 Gyrostat internal rotor angular moment perturbation 

Let us investigate of gyrostat motion at presence of small harmonic perturbations in 

relative rotor angular moment R: 

   1 2 31 sin ; , , ; const
T

it R R R R    R R R     (17) 

This perturbation can be associated with existence of small harmonic disturbances in electric 
circuit of internal rotor-engine (simulation of simplest self-induction effects). Corresponding 
motion equations follow from angular moments law: 

  e e e
const lin quad+ × + = + + K ω K R M M M R       (18) 

We conduct examination of perturbed motion on the base of NL-gyrostat. Other type of 
gyrostat (A-S, LOR, ROS) can be considered by analogy. 
 Take into account conditions (8.NL) and (17) perturbed motion equations for NL-gyrostat 
will be write as follows: 

1

2

3

5

5

x kx y wyz Pert

y x my xz Pert

z vz xy Pert

    


    
   







      (19) 

where Perti are components of vector 
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2 3 1

3 1 2

1 2 3

sin cos

sin cos

sin cos

R z R y t R t
A

R x R z t R t
B

R y R x t R t
C







 
       

 
         
 
         

Pert     (20) 

Let us note, that perturbation vector (20) will be the same also for other type (A-NL). 
 Case 1. Firstly, consider main case of the NL system with w=10. Numerical research 

results are present at fig.7 and was obtained at following parameters and initial condition values: 

A=B=C=1; R1=1; R2=1.5; R3=2; =100; =0.01; x(0)=0.349; y(0)=0.0; z(0)=-0.16. 

In this case Lyapunov exponents and Kaplane-Yorke dimension for unperturbed and 

perturbed motion of NL-gyrostat (with accuracy 10-2) are equal:  

   1 2 30 : 0.14; 0; 0.76 ; 2.18KYD         ; 

    1 2 30.01: 0.12; 0.01; 0.74 ; 2.18KYD          . 

Consequently, the system is dissipative (negative sum of all Lyapunov index) and has attractor; 
the system is chaotic (1>0); the system attractor is strange (fractional DKY). 

Case 2. Now consider case with w=1; other parameters are the same, like previous case. 

Numerical research results are present at fig.8. 

In this case Lyapunov exponents and Kaplane-Yorke dimension (with accuracy 10-2) are 

equal:  

   1 2 30 : 0.01; 0.10; 0.53 ; 1.1;KYD           

   1 2 30.01: 0.01; 0.11; 0.53 ; 1.09.KYD           

The system also is dissipative, chaotic (1>0) and has strange attractor. But absolute 

value of positive 1-exponent is small (limiting close to zero with actual accuracy), therefore, 

trajectory mixing is weak. It allows conclude, that the system is quasichaotic. It is also supported 

by regulation trend of time history of phase coordinate, kinetic energy, longitudinal axes 

hodograph, and by chaotic but degenerating power spectrum (fig.8). 

Case 3. Finally, let us consider case for w=10, v=0. In this case all Lyapunov exponents 
are negative and therefore motion is regular, system is dissipative, Kaplane-Yorke dimension 
equal to zero and attractor is stationary point (corresponded to permanent rotation of main body). 
The system regular motion represents transition to permanent rotation about body z-axis 
(x(t)0, y(t)0, z(t)z*=const). Numerical research results (fig.9) demonstrate signs of regular 
motion.  

Comment about application of NL-gyrostat case. The Newton-Leipnik system describes 
attitude motion of spacecraft with linear feedback control [3]. NL-gyrostat results can be applied 
to simulation of perturbed attitude nonregular motion of gyrostat-spacecraft.  



PREPRINT of the paper:  Doroshin, A.V. Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors (2011)  
Communications in Nonlinear Science and Numerical Simulation, 16 (8), pp. 3188-3202 

 14

      
   (a)       (b) 

      
   (c)       (d) 

          
   (e)       (f) 

Fig.7 – Numerical research results for NL-gyrostat chaotic motion with rotor relative angular 
moment variability ( = 0.01,  w = 10) 
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   (a)       (b) 

               
   (c)       (d) 

             
   (e)       (f) 

Fig.8 – Numerical research results for NL-gyrostat quasichaotic motion with rotor relative 
angular moment variability ( = 0.01,  w = 1) 
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   (a)       (b) 

          
   (c)       (d) 

              
   (e)       (f) 

Fig.9 – Numerical research results for NL-gyrostat regular motion ( = 0,  w = 1,  v = 0) 
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5 Conclusion 

Links between mathematical models of gyrostats and dynamical systems with strange 
attractors (Lorenz, Rössler, Newton-Leipnik and Sprott systems) were established. In order to 
examine of perturbed motion several numerical techniques was used: time-history of phase 
coordinate, kinetic energy, power spectrum of fast Fourier transformation, asymptotics of 
Lyapunov exponents and gyrostat longitudinal axis vector hodograph, and Poincaré sections. 
Mentioned numerical techniques showed chaotic and quasichaotic behavior of motion. Cases for 
perturbed gyrostat motion with variable periodical inertia moments and with periodical internal 
rotor relative angular moment were considered. 
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